Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.086
Filtrar
1.
Plant Cell Physiol ; 64(3): 284-290, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36331512

RESUMO

Shoot stem cells act as the source of the aboveground parts of flowering plants. A precise regulatory basis is required to ensure that plant stem cells show the right status during the stages of proliferation, senescence and cell death. Over the past few decades, the genetic circuits controlling stem cell fate, including the regulatory pathways of establishment, maintenance and differentiation, have been largely revealed. However, the morphological changes and molecular mechanisms of the final stages of stem cells, which are represented by senescence and cell death, have been less studied. The senescence and death of shoot stem cells are under the control of a complex series of pathways that integrate multiple internal and external signals. Given the crucial roles of shoot stem cells in influencing plant longevity and crop yields, researchers have attempted to uncover details of stem cell senescence and death. Recent studies indicate that stem cell activity arrest is controlled by the FRUITFULL-APETALA2 pathway and the plant hormones auxin and cytokinin, while the features of senescent and dead shoot apical stem cells have also been described, with dynamic changes in reactive oxygen species implicated in stem cell death. In this review, we highlight the recent breakthroughs that have enriched our understanding of senescence and cell death processes in plant stem cells.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Senescência Vegetal , Brotos de Planta , Células-Tronco , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Citocininas/genética , Citocininas/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Meristema/genética , Meristema/metabolismo , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Senescência Vegetal/genética , Senescência Vegetal/fisiologia , Brotos de Planta/genética , Brotos de Planta/metabolismo , Brotos de Planta/fisiologia , Morte Celular Regulada/genética , Morte Celular Regulada/fisiologia , Células-Tronco/metabolismo , Células-Tronco/fisiologia
2.
Gene ; 833: 146596, 2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35598679

RESUMO

Thermo-sensitive cytoplasmic male sterility is of great significance to heterosis and hybrid seed production in wheat. Consequently, it is worthwhile to research the genes associated with male sterility. Although polygalacturonases (PGs) have been studied to play a crucial role in male reproduction of many plants, their functions in the reproductive development of wheat remain unclear. Here, TaPG (TraesCS7A02G404900) encoding a polygalacturonase was isolated from the anthers of KTM3315A, a wheat thermo-sensitive cytoplasmic male sterile with Aegilops kotschyi cytoplasm. Expression pattern analyses showed that TaPG was strongly expressed in fertile anthers and its protein was localized in the cell wall. Further verification via barley stripe mosaic virus revealed that the silencing of TaPG exhibited abnormal anthers, premature degradation of tapetum, pollen abortion, and defective pollen wall formation, resulting in the declination of fertility. Conclusively, our research suggested that TaPG contributed to the pollen development and male fertility, which will provide a novel insight into the fertility conversion of thermo-sensitive cytoplasmic male sterility in wheat.


Assuntos
Infertilidade das Plantas , Pólen , Poligalacturonase , Triticum , Citoplasma/genética , Citoplasma/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Infertilidade das Plantas/genética , Infertilidade das Plantas/fisiologia , Pólen/genética , Pólen/metabolismo , Poligalacturonase/genética , Poligalacturonase/metabolismo , Triticum/genética , Triticum/metabolismo
3.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35115407

RESUMO

Plant root growth is indeterminate but continuously responds to environmental changes. We previously reported on the severe root growth defect of a double mutant in bZIP17 and bZIP28 (bz1728) modulating the unfolded protein response (UPR). To elucidate the mechanism by which bz1728 seedlings develop a short root, we obtained a series of bz1728 suppressor mutants, called nobiro, for rescued root growth. We focused here on nobiro6, which is defective in the general transcription factor component TBP-ASSOCIATED FACTOR 12b (TAF12b). The expression of hundreds of genes, including the bZIP60-UPR regulon, was induced in the bz1728 mutant, but these inductions were markedly attenuated in the bz1728nobiro6 mutant. In view of this, we assigned transcriptional cofactor activity via physical interaction with bZIP60 to NOBIRO6/TAF12b. The single nobiro6/taf12b mutant also showed an altered sensitivity to endoplasmic reticulum stress for both UPR and root growth responses, demonstrating that NOBIRO6/TAF12b contributes to environment-responsive root growth control through UPR.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Fator XII/metabolismo , Raízes de Plantas/metabolismo , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Resposta a Proteínas não Dobradas/fisiologia , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Plântula/metabolismo , Transdução de Sinais/fisiologia
4.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35121664

RESUMO

The core plant microprocessor consists of DICER-LIKE 1 (DCL1), SERRATE (SE), and HYPONASTIC LEAVES 1 (HYL1) and plays a pivotal role in microRNA (miRNA) biogenesis. However, the proteolytic regulation of each component remains elusive. Here, we show that HYL1-CLEAVAGE SUBTILASE 1 (HCS1) is a cytoplasmic protease for HYL1-destabilization. HCS1-excessiveness reduces HYL1 that disrupts miRNA biogenesis, while HCS1-deficiency accumulates HYL1. Consistently, we identified the HYL1K154A mutant that is insensitive to the proteolytic activity of HCS1, confirming the importance of HCS1 in HYL1 proteostasis. Moreover, HCS1-activity is regulated by light/dark transition. Under light, cytoplasmic CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) E3 ligase suppresses HCS1-activity. COP1 sterically inhibits HCS1 by obstructing HYL1 access into the catalytic sites of HCS1. In contrast, darkness unshackles HCS1-activity for HYL1-destabilization due to nuclear COP1 relocation. Overall, the COP1-HYL1-HCS1 network may integrate two essential cellular pathways: the miRNA-biogenetic pathway and light signaling pathway.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , MicroRNAs/metabolismo , Processamento Pós-Transcricional do RNA/fisiologia , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Folhas de Planta/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
5.
Dev Cell ; 57(4): 543-560.e9, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35134336

RESUMO

In all multicellular organisms, transcriptional networks orchestrate organ development. The Arabidopsis root, with its simple structure and indeterminate growth, is an ideal model for investigating the spatiotemporal transcriptional signatures underlying developmental trajectories. To map gene expression dynamics across root cell types and developmental time, we built a comprehensive, organ-scale atlas at single-cell resolution. In addition to estimating developmental progressions in pseudotime, we employed the mathematical concept of optimal transport to infer developmental trajectories and identify their underlying regulators. To demonstrate the utility of the atlas to interpret new datasets, we profiled mutants for two key transcriptional regulators at single-cell resolution, shortroot and scarecrow. We report transcriptomic and in vivo evidence for tissue trans-differentiation underlying a mixed cell identity phenotype in scarecrow. Our results support the atlas as a rich community resource for unraveling the transcriptional programs that specify and maintain cell identity to regulate spatiotemporal organ development.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Redes Reguladoras de Genes/genética , Raízes de Plantas/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Redes Reguladoras de Genes/fisiologia , Mutação/genética , Raízes de Plantas/metabolismo , Análise de Célula Única/métodos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma/fisiologia
6.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35131943

RESUMO

Although they are staple foods in cuisines globally, many commercial fruit varieties have become progressively less flavorful over time. Due to the cost and difficulty associated with flavor phenotyping, breeding programs have long been challenged in selecting for this complex trait. To address this issue, we leveraged targeted metabolomics of diverse tomato and blueberry accessions and their corresponding consumer panel ratings to create statistical and machine learning models that can predict sensory perceptions of fruit flavor. Using these models, a breeding program can assess flavor ratings for a large number of genotypes, previously limited by the low throughput of consumer sensory panels. The ability to predict consumer ratings of liking, sweet, sour, umami, and flavor intensity was evaluated by a 10-fold cross-validation, and the accuracies of 18 different models were assessed. The prediction accuracies were high for most attributes and ranged from 0.87 for sourness intensity in blueberry using XGBoost to 0.46 for overall liking in tomato using linear regression. Further, the best-performing models were used to infer the flavor compounds (sugars, acids, and volatiles) that contribute most to each flavor attribute. We found that the variance decomposition of overall liking score estimates that 42% and 56% of the variance was explained by volatile organic compounds in tomato and blueberry, respectively. We expect that these models will enable an earlier incorporation of flavor as breeding targets and encourage selection and release of more flavorful fruit varieties.


Assuntos
Mirtilos Azuis (Planta)/metabolismo , Frutas/química , Melhoramento Vegetal , Proteínas de Plantas/metabolismo , Solanum lycopersicum/metabolismo , Mirtilos Azuis (Planta)/genética , Comportamento do Consumidor , Regulação da Expressão Gênica de Plantas/fisiologia , Humanos , Solanum lycopersicum/genética , Aprendizado de Máquina , Proteínas de Plantas/genética , Paladar , Compostos Orgânicos Voláteis
7.
Commun Biol ; 5(1): 145, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35177775

RESUMO

Light-harvesting complexes (LHCs) are pigment-protein complexes whose main function is to capture sunlight and transfer the energy to reaction centers of photosystems. In response to varying light conditions, LH complexes also play photoregulation and photoprotection roles. In algae and mosses, a sub-family of LHCs, light-harvesting complex stress-related (LHCSR), is responsible for photoprotective quenching. Despite their functional and evolutionary importance, no direct structural information on LHCSRs is available that can explain their unique properties. In this work, we propose a structural model of LHCSR1 from the moss P. patens, obtained through an integrated computational strategy that combines homology modeling, molecular dynamics, and multiscale quantum chemical calculations. The model is validated by reproducing the spectral properties of LHCSR1. Our model reveals the structural specificity of LHCSR1, as compared with the CP29 LH complex, and poses the basis for understanding photoprotective quenching in mosses.


Assuntos
Bryopsida/metabolismo , Complexos de Proteínas Captadores de Luz , Estresse Fisiológico , Sequência de Aminoácidos , Bryopsida/genética , Simulação por Computador , Regulação da Expressão Gênica de Plantas/fisiologia , Pigmentos Biológicos , Conformação Proteica
8.
Int J Mol Sci ; 23(4)2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35216049

RESUMO

The hormones auxin and cytokinin regulate numerous aspects of plant development and often act as an antagonistic hormone pair. One of the more striking examples of the auxin/cytokinin antagonism involves regulation of the shoot/root growth ratio in which cytokinin promotes shoot and inhibits root growth, whereas auxin does the opposite. Control of the shoot/root growth ratio is essential for the survival of terrestrial plants because it allows growth adaptations to water and mineral nutrient availability in the soil. Because a decrease in shoot growth combined with an increase in root growth leads to survival under drought stress and nutrient limiting conditions, it was not surprising to find that auxin promotes, while cytokinin reduces, drought stress tolerance and nutrient uptake. Recent data show that drought stress and nutrient availability also alter the cytokinin and auxin signaling and biosynthesis pathways and that this stress-induced regulation affects cytokinin and auxin in the opposite manner. These antagonistic effects of cytokinin and auxin suggested that each hormone directly and negatively regulates biosynthesis or signaling of the other. However, a growing body of evidence supports unidirectional regulation, with auxin emerging as the primary regulatory component. This master regulatory role of auxin may not come as a surprise when viewed from an evolutionary perspective.


Assuntos
Adaptação Fisiológica/fisiologia , Arabidopsis/metabolismo , Citocininas/metabolismo , Ácidos Indolacéticos/metabolismo , Nutrientes/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/metabolismo , Secas , Regulação da Expressão Gênica de Plantas/fisiologia
9.
Int J Mol Sci ; 23(4)2022 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-35216183

RESUMO

The intercellular transport of sugars, nutrients, and small molecules is essential for plant growth, development, and adaptation to environmental changes. Various stresses are known to affect the cell-to-cell molecular trafficking modulated by plasmodesmal permeability. However, the mechanisms of plasmodesmata modification and molecules involved in the phloem unloading process under stress are still not well understood. Here, we show that heat stress reduces the root meristem size and inhibits phloem unloading by inducing callose accumulation at plasmodesmata that connect the sieve element and phloem pole pericycle. Furthermore, we identify the loss-of-function of CALLOSE SYNTHASE 8 (CalS8), which is expressed specifically in the phloem pole pericycle, decreasing the plasmodesmal callose deposition at the interface between the sieve element and phloem pole pericycle and alleviating the suppression at root meristem size by heat stress. Our studies indicate the involvement of callose in the interaction between root meristem growth and heat stress and show that CalS8 negatively regulates the thermotolerance of Arabidopsis roots.


Assuntos
Arabidopsis/metabolismo , Glucanos/metabolismo , Resposta ao Choque Térmico/fisiologia , Meristema/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/fisiologia , Plasmodesmos/metabolismo , Arabidopsis/fisiologia , Proteínas de Arabidopsis/metabolismo , Transporte Biológico/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Glucosiltransferases/metabolismo , Meristema/fisiologia , Desenvolvimento Vegetal/fisiologia , Plasmodesmos/fisiologia
10.
Int J Mol Sci ; 23(4)2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35216200

RESUMO

Tonoplast aquaporins (intrinsic proteins, TIPs) have been indicated to play important roles in plant tolerance to water deficit and salinity. However, the functions of wheat TIPs in response to the stresses are largely unknown. In this study, we observed that transgenic plants overexpressing wheat TaTIP4;1 in Arabidopsis and rice displayed clearly enhanced seed germination and seedling growth under drought, salt and osmotic stress. Compared with wild type plants, Arabidopsis and rice overexpression lines had heightened water contents, reduced leaf water loss, lowered levels of Na+, Na+/K+, H2O2 and malondialdehyde, and improved activities of catalase and/or superoxide dismutase, and increased accumulation of proline under drought, salinity and/or osmotic stresses. Moreover, the expression levels of multiple drought responsive genes clearly elevated upon water dehydration, and the transcription of some salt responsive genes was markedly induced by NaCl treatment in the overexpression lines. Also, the yeast cells containing TaTIP4;1 showed increased tolerance to NaCl and mannitol, and mutation in one of three serines of TaTIP4;1 caused decreased tolerance to the two stresses. These results suggest that TaTIP4;1 serves as an essential positive regulator of seed germination and seedling growth under drought, salt and/or osmotic stress through impacting water relations, ROS balance, the accumulation of Na+ and proline, and stimulating the expression of dozens of stress responsive genes in Arabidopsis and rice. Phosphorylation may modulate the activity of TaTIP4;1.


Assuntos
Arabidopsis/fisiologia , Oryza/fisiologia , Pressão Osmótica/fisiologia , Tolerância ao Sal/fisiologia , Estresse Fisiológico/fisiologia , Triticum/fisiologia , Aquaporinas/genética , Aquaporinas/metabolismo , Arabidopsis/genética , Secas , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Germinação/genética , Germinação/fisiologia , Peróxido de Hidrogênio/metabolismo , Malondialdeído/metabolismo , Oryza/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Salinidade , Tolerância ao Sal/genética , Plântula/genética , Plântula/metabolismo , Plântula/fisiologia , Cloreto de Sódio/metabolismo , Estresse Fisiológico/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Triticum/genética
11.
Int J Mol Sci ; 23(4)2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35216268

RESUMO

Brassinosteriods (BRs) are plant hormones essential for plant growth and development. The receptor-like kinase (RLK) BRI1 perceives BRs to initiate a well-known transduction pathway which finally activate the transcription factors BZR1/BES1 specifically regulating BR-mediated gene expression. The RLK EMS1 governs tapetum formation via the same signaling pathway shared with BRI1. BRI1 and EMS1 have a common signal output, but the gene structural specificity and the molecular response remain unclear. In this study, we identified that the transmembrane (TM), intracellular juxtamembrane (iJM), kinase, and leucin-rich repeats 1-13 (LRR1-13) domains of EMS1 could replace the corresponding BRI1 domain to maintain the BR receptor function, whereas the extracellular juxtamembrane (eJM) and LRR1-14 domains could not, indicating that the LRR14-EJM domain conferred functional specificity to BRI1. We compared the kinase domains of EMS1 and BRI1, and found that EMS1's kinase activity was weaker than BRI1's. Further investigation of the specific phosphorylation sites in BRI1 and EMS1 revealed that the Y1052 site in the kinase domain was essential for the BRI1 biological function, but the corresponding site in EMS1 showed no effect on the biological function of EMS1, suggesting a site regulation difference in the two receptors. Furthermore, we showed that EMS1 shared the substrate BSKs with BRI1. Our study provides insight into the structural specificity and molecular mechanism of BRI1 and EMS1, as well as the origin and divergence of BR receptors.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Quimera/metabolismo , Proteínas Quinases/metabolismo , Membrana Celular/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Fosforilação/fisiologia , Plantas Geneticamente Modificadas/metabolismo , Transdução de Sinais/fisiologia , Fatores de Transcrição/metabolismo
12.
Int J Mol Sci ; 23(4)2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35216343

RESUMO

In plants, salicylic acid (SA) is a hormone that mediates a plant's defense against pathogens. SA also takes an active role in a plant's response to various abiotic stresses, including chilling, drought, salinity, and heavy metals. In addition, in recent years, numerous studies have confirmed the important role of SA in plant morphogenesis. In this review, we summarize data on changes in root morphology following SA treatments under both normal and stress conditions. Finally, we provide evidence for the role of SA in maintaining the balance between stress responses and morphogenesis in plant development, and also for the presence of SA crosstalk with other plant hormones during this process.


Assuntos
Desenvolvimento Vegetal/fisiologia , Raízes de Plantas/metabolismo , Plantas/metabolismo , Ácido Salicílico/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Reguladores de Crescimento de Plantas/metabolismo
13.
Int J Mol Sci ; 23(4)2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35216388

RESUMO

Phosphorus is an essential macronutrient for plants. The phosphate (Pi) concentration in soil solutions is typically low, and plants always suffer from low-Pi stress. During Pi starvation, a number of adaptive mechanisms in plants have evolved to increase Pi uptake, whereas the mechanisms are not very clear. Here, we report that an ubiquitin E3 ligase, PRU2, modulates Pi acquisition in Arabidopsis response to the low-Pi stress. The mutant pru2 showed arsenate-resistant phenotypes and reduced Pi content and Pi uptake rate. The complementation with PRU2 restored these to wild-type plants. PRU2 functioned as an ubiquitin E3 ligase, and the protein accumulation of PRU2 was elevated during Pi starvation. PRU2 interacted with a kinase CK2α1 and a ribosomal protein RPL10 and degraded CK2α1 and RPL10 under low-Pi stress. The in vitro phosphorylation assay showed that CK2α1 phosphorylated PHT1;1 at Ser-514, and prior reports demonstrated that the phosphorylation of PHT1;1 Ser-514 resulted in PHT1;1 retention in the endoplasmic reticulum. Then, the degradation of CK2α1 by PRU2 under low-Pi stress facilitated PHT1;1 to move to the plasma membrane to increase Arabidopsis Pi uptake. Taken together, this study demonstrated that the ubiquitin E3 ligase-PRU2-was an important positive regulator in modulating Pi acquisition in Arabidopsis response to low-Pi stress.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Transporte Biológico/fisiologia , Fosfatos/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Arseniatos/metabolismo , Membrana Celular/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas de Transporte de Fosfato/metabolismo , Fósforo/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitinas/metabolismo
14.
Int J Mol Sci ; 23(4)2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35216399

RESUMO

Ubiquitination is a major type of post-translational modification of proteins in eukaryotes. The plant U-Box (PUB) E3 ligase is the smallest family in the E3 ligase superfamily, but plays a variety of essential roles in plant growth, development and response to diverse environmental stresses. Hence, PUBs are potential gene resources for developing climate-resilient crops. However, there is a lack of review of the latest advances to fully understand the powerful gene family. To bridge the gap and facilitate its use in future crop breeding, we comprehensively summarize the recent progress of the PUB family, including gene evolution, classification, biological functions, and multifarious regulatory mechanisms in plants.


Assuntos
Proteínas de Plantas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Melhoramento Vegetal/métodos , Desenvolvimento Vegetal/fisiologia , Estresse Fisiológico/fisiologia , Ubiquitinação/fisiologia
15.
Int J Mol Sci ; 23(4)2022 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35216424

RESUMO

Plants are frequently exposed to a variety of abiotic stresses, such as those caused by salt, drought, cold, and heat. All of these stressors can induce changes in the proteoforms, which make up the proteome of an organism. Of the many different proteoforms, protein ubiquitination has attracted a lot of attention because it is widely involved in the process of protein degradation; thus regulates many plants molecular processes, such as hormone signal transduction, to resist external stresses. Ubiquitin ligases are crucial in substrate recognition during this ubiquitin modification process. In this review, the molecular mechanisms of plant responses to abiotic stresses from the perspective of ubiquitin ligases have been described. This information is critical for a better understanding of plant molecular responses to abiotic stresses.


Assuntos
Plantas/metabolismo , Estresse Fisiológico/fisiologia , Ubiquitina-Proteína Ligases/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Transdução de Sinais/fisiologia , Ubiquitinação/fisiologia
16.
Sci Rep ; 12(1): 2856, 2022 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-35190606

RESUMO

The SQUAMOSA promoter-binding protein-like (SPL) family play a key role in guiding the switch of plant growth from juvenile to adult phases. Populus euphratica Oliv. exhibit typical heterophylly, and is therefore an ideal model for studying leaf shape development. To investigate the role and regulated networks of SPLs in the morphogenesis of P. euphratica heteromorphic leaves. In this study, 33 P. euphratica SPL (PeuSPL) genes were identified from P. euphratica genome and transcriptome data. Phylogenetic analysis depicted the classification of these SPL genes into two subgroups. The expression profiles and regulatory networks of P. euphratica SPL genes analysis displayed that major P. euphratica SPL family members gradually increases from linear to broad-ovate leaves, and they were involved in the morphogenesis regulation, stress response, transition from vegetative to reproductive growth, photoperiod, and photosynthesis etc. 14 circRNAs, and 33 lncRNAs can promote the expression of 12 of the P. euphratica SPLs by co-decoying miR156 in heteromorphic leaf morphogenesis. However, it was found that the effect of PeuSPL2-4 and PeuSPL9 in leaf shape development was contrasting to their homologous genes of Arabidopsis. Therefore, it was suggested that the SPL family were evolutionarily conserved for regulation growth, but were varies in different plant for regulation of the organ development.


Assuntos
Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Genes de Plantas/genética , Morfogênese/genética , Folhas de Planta/genética , Populus/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fotossíntese/genética , Filogenia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Populus/crescimento & desenvolvimento , Populus/fisiologia , RNA Circular/fisiologia , RNA Longo não Codificante/fisiologia , RNA de Plantas/fisiologia
17.
Plant Mol Biol ; 108(3): 241-255, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35064421

RESUMO

KEY MESSAGE: Nonsense-mediated mRNA decay (NMD)-mediated degradation of BrFLC2 transcripts is the main cause of rapid flowering of oilseed-type B. rapa 'LP08' plants. Many Brassica species require vernalization (long-term winter-like cooling) for transition to the reproductive stage. In the past several decades, scientific efforts have been made to discern the molecular mechanisms underlying vernalization in many species. Thus, to identify the key regulators required for vernalization in Brassica rapa L., we constructed a linkage map composed of 7833 single nucleotide polymorphism markers using the late-flowering Chinese cabbage (B. rapa L. ssp. pekinensis) inbred line 'Chiifu' and the early-flowering yellow sarson (B. rapa L. ssp. trilocularis) line 'LP08' and identified a single major QTL on the upper-arm of the chromosome A02. In addition, we compared the transcriptomes of the lines 'Chiifu' and 'LP08' at five vernalization time points, including both non-vernalized and post-vernalization conditions. We observed that BrFLC2 was significantly downregulated in the early flowering 'LP08' and had two deletion sites (one at 4th exon and the other at 3' downstream region) around the BrFLC2 genomic region compared with the BrFLC2 genomic region in 'Chiifu'. Large deletion at 3' downstream region did not significantly affect transcription of both sense BrFLC2 transcript and antisense transcript, BrFLC2as along vernalization time course. However, the other deletion at 4th exon of BrFLC2 resulted in the generation of premature stop codon in BrFLC2 transcript in LP08 line. Cycloheximide treatment of LP08 line showed the de-repressed level of BrFLC2 in LP08, suggesting that low transcript level of BrFLC2 in LP08 might be caused by nonsense-mediated mRNA decay removing the nonsense transcript of BrFLC2. Collectively, this study provides a better understanding of the molecular mechanisms underlying floral transition in B. rapa.


Assuntos
Brassica rapa/genética , Brassica rapa/fisiologia , Códon de Terminação/genética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas de Plantas/metabolismo , Sequência de Bases , DNA de Plantas , Genoma de Planta , Mutação , Proteínas de Plantas/genética , Locos de Características Quantitativas
18.
Plant Commun ; 3(1): 100250, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35059630

RESUMO

Tension wood (TW) is a specialized xylem tissue formed in angiosperm trees under gravitational stimulus or mechanical stresses (e.g., bending). The genetic regulation that underlies this important mechanism remains poorly understood. Here, we used laser capture microdissection of stem xylem cells coupled with full transcriptome RNA-sequencing to analyze TW formation in Populus trichocarpa. After tree bending, PtrLBD39 was the most significantly induced transcription factor gene; it has a phylogenetically paired homolog, PtrLBD22. CRISPR-based knockout of PtrLBD39/22 severely inhibited TW formation, reducing cellulose and increasing lignin content. Transcriptomic analyses of CRISPR-based PtrLBD39/22 double mutants showed that these two genes regulate a set of TW-related genes. Chromatin immunoprecipitation sequencing (ChIP-seq) was used to identify direct targets of PtrLBD39. We integrated transcriptomic analyses and ChIP-seq assays to construct a transcriptional regulatory network (TRN) mediated by PtrLBD39. In this TRN, PtrLBD39 directly regulates 26 novel TW-responsive transcription factor genes. Our work suggests that PtrLBD39 and PtrLBD22 specifically control TW formation by mediating a TW-specific TRN in Populus.


Assuntos
Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Genes de Plantas , Populus , Madeira , Fenômenos Biomecânicos , Regulação da Expressão Gênica de Plantas/fisiologia , Redes Reguladoras de Genes/fisiologia , Genes de Plantas/genética , Genes de Plantas/fisiologia , Microdissecção e Captura a Laser , Populus/genética , Populus/fisiologia , Madeira/genética , Madeira/fisiologia , Xilema
19.
Dev Cell ; 57(4): 526-542.e7, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35063083

RESUMO

Shoot regeneration is mediated by the sequential action of two phytohormones, auxin and cytokinin. However, the chromatin regulatory landscapes underlying this dynamic response have not yet been studied. In this study, we jointly profiled chromatin accessibility, histone modifications, and transcriptomes to demonstrate that a high auxin/cytokinin ratio environment primes Arabidopsis shoot regeneration by increasing the accessibility of the gene loci associated with pluripotency and shoot fate determination. Cytokinin signaling not only triggers the commitment of the shoot progenitor at later stages but also allows chromatin to maintain shoot identity genes at the priming stage. Our analysis of transcriptional regulatory dynamics further identifies a catalog of regeneration cis-elements dedicated to cell fate transitions and uncovers important roles of BES1, MYC, IDD, and PIF transcription factors in shoot regeneration. Our results, thus, provide a comprehensive resource for studying cell reprogramming in plants and provide potential targets for improving future shoot regeneration efficiency.


Assuntos
Cromatina/metabolismo , Citocininas/metabolismo , Ácidos Indolacéticos/metabolismo , Regeneração/fisiologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Diferenciação Celular/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Brotos de Planta/metabolismo , Fatores de Transcrição/metabolismo , Transcriptoma/fisiologia
20.
Plant Mol Biol ; 108(3): 257-275, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35050466

RESUMO

KEY MESSAGE: A dehydration-inducible Arabidopsis CIN-like TCP gene, TCP13, acts as a key regulator of plant growth in leaves and roots under dehydration stress conditions. Plants modulate their shape and growth in response to environmental stress. However, regulatory mechanisms underlying the changes in shape and growth under environmental stress remain elusive. The CINCINNATA (CIN)-like TEOSINTE BRANCHED1/CYCLOIDEA/PCF (TCP) family of transcription factors (TFs) are key regulators for limiting the growth of leaves through negative effect of auxin response. Here, we report that stress-inducible CIN-like TCP13 plays a key role in inducing morphological changes in leaves and growth regulation in leaves and roots that confer dehydration stress tolerance in Arabidopsis thaliana. Transgenic Arabidopsis plants overexpressing TCP13 (35Spro::TCP13OX) exhibited leaf rolling, and reduced leaf growth under osmotic stress. The 35Spro::TCP13OX transgenic leaves showed decreased water loss from leaves, and enhanced dehydration tolerance compared with their control counterparts. Plants overexpressing a chimeric repressor domain SRDX-fused TCP13 (TCP13pro::TCP13SRDX) showed severely serrated leaves and enhanced root growth. Transcriptome analysis of TCP13pro::TCP13SRDX transgenic plants revealed that TCP13 affects the expression of dehydration- and abscisic acid (ABA)-regulated genes. TCP13 is also required for the expression of dehydration-inducible auxin-regulated genes, INDOLE-3-ACETIC ACID5 (IAA5) and LATERAL ORGAN BOUNDARIES (LOB) DOMAIN 1 (LBD1). Furthermore, tcp13 knockout mutant plants showed ABA-insensitive root growth and reduced dehydration-inducible gene expression. Our findings provide new insight into the molecular mechanism of CIN-like TCP that is involved in both auxin and ABA response under dehydration stress.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Ligação a DNA/metabolismo , Desidratação , Regulação da Expressão Gênica de Plantas/fisiologia , Fatores de Transcrição/metabolismo , Água/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Ligação a DNA/genética , Plantas Geneticamente Modificadas , Plasmídeos , Estresse Fisiológico , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...